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A radial temperature distribution is applied to the top of a cylinder of rotating stably
stratified fluid. Thermal wind shear drives the interior flow. Linearized theory predicts,
and laboratory experiments confirm, that when the stratification is large enough it
completely suppresses the Ekman pumping into the interior. The interior velocity field,
which is primarily azimuthal, responds by satisfying the no-slip boundary conditions
without the need of Ekman layers on the horizontal surfaces. Moreover, for large
stratification a thermal boundary layer beneath the top surface traps the thermal
disturbance applied at the upper surface. The greatest azimuthal velocity occurs at the
base of this layer. Below this layer the azimuthal velocity viscously diffuses downward
with thermal wind adjusting the temperature. The Rossby radius of deformation based
on this layer depth is the cylinder’s radius divided by the square root of the Prandtl
number. Detailed measurements of the velocity field generated in the cylinder by the
heating are compared with the theory in the case where the Ekman layers are
eliminated by stratification. The theory and experiments agree qualitatively well over
a range of four orders of magnitude of imposed parameters and over a large parameter
range the quantitative comparison is also very good.

1. Introduction

The present study arose as a consequence of an attempt to understand the circulation
of the Black Sea and similar small ocean basins. A series of studies (Bulgakov 1987;
Bulgakov, Korotaev & Whitehead 1996a, b, 1997) has attempted to describe and deal
especially with the phenomenon of buoyancy forcing of the circulation of the Black
Sea. Although it is generally believed that the overall cyclonic circulation of the Black
Sea has a strong wind-driven component, the role of buoyancy forcing as an important
component of the forcing is suggested in the papers referenced above. In particular, the
role of river run-off and its associated salinity anomalies provide a plausible
mechanism for buoyancy forcing of the circulation. Interchange of water with the sea
of Marmara through the Bosphorous Straits represents another possible source of
buoyancy forcing. Several visits to the Woods Hole Oceanographic Institution in the
last decade by Ukrainian oceanographers led to a series of laboratory experiments
carried out there in which fresh water and salinity forcing was simulated by the
introduction of fresh and saline water at various locations along the rim of a rotating
cylinder of water. Other laboratory attempts to model such buoyancy forcing involved
thermally driving the flow by heating the cylindrical container along its sides. For
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example, in one case a high temperature was imposed on the upper surface of the
cylinder while the outer rim was cooled. Or, in another, the heating and cooling were
introduced on the sidewall by exposing the upper half of the cylinder to a temperature
bath at higher temperature than the lower half. In all cases a strongly baroclinic
circulation was observed in rough qualitative agreement with the predictions of a very
simple physical theory. The underlying theory assumed the internal density field in the
fluid was established entirely by diffusion and the azimuthal velocity in the basin then
was calculated by thermal wind considerations, i.e. by the application of the
geostrophic and hydrostatic approximations. Quantitative agreement between the
experiments and theory was poor. This was probably due to the absence of advective
effects of density in the theory and also to the rather difficult theoretical problem posed
by the experiments in which the static stability of the fluid is eliminated at the position
of the forcing whenever the temperature on the rim is made locally independent of
depth.

An attempt was therefore made to construct an experiment which would allow a
more careful comparison between the experimental results and theory. To that end we
set up a configuration in which a rotating cylinder of fluid was endowed with a nearly
uniform vertical stratification with, in addition, a very small radial temperature
variation imposed on the upper surface. This surface temperature forcing was axially
symmetric and was of small enough amplitude so that the fluid was always stably
stratified. The experimental apparatus is described in more detail in §2.

It is clear that the resulting physical system is now quite far from being a realistic
model of the circulation of the Black Sea or perhaps any real oceanographic flow. We
tend to view it, as described above, as a way-station in our attempt to find a situation
in which careful laboratory measurements can be compared to theory as a starting
point for more difficult and realistic experiments in the future. The simplicity of the
present experiment allows the effects of advection of density to be dealt with within the
context of a linearization of the temperature equation as described in §3 below.

The theory that is used in this study is a minor extension of the theory developed
nearly three decades ago and described in a series of papers by Barcilon & Pedlosky
(1967a–c). See also Veronis (1967). The theory of Barcilon & Pedlosky is a linear
theory in which the advection of momentum is ignored and the advection of density
is modelled by the vertical advection of a large vertically varying O(1) stratification.
There have been few opportunities for a detailed comparison of the results of that
theory with laboratory experiments and so another motive of the present study is to
examine how well this linearized theory, described in detail in §3, can reproduce and
explain the principal experimental results.

The comparison between theory and experiment is described in §4. Rather
astonishingly, given the idealizations of the linear theory, we find satisfying quantitative
agreement between the theory and experiments. In particular, the theory predicts, in
the limit of large stratification, the existence of internal jets whose maximum velocities
occur at a depth which depends on stratification so that, as the stratification
strengthens, the velocity maximum becomes closer to the upper surface of the fluid
where it is heated. The depth of maximum velocity is such that a Rossby deformation
radius based on that depth is equal to the cylinder radius divided by the square root
of the Prandtl number.

Another prediction of the theory is the quenching of the Ekman layer suction on the
horizontal rigid surfaces of the cylinder when the stratification exceeds a critical level.
Although these boundary layers are a controlling influence for weakly stratified fluids
(Greenspan 1968) through the mechanism of Ekman suction and pumping, strongly
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stratified flows can eliminate the need for the Ekman layers by allowing the inviscid
interior flow to satisfy the no-slip boundary condition directly. This is described more
completely in §3 but a principal result of the present study is the demonstration of this
phenomenon in the experiment.

The last section of the paper, §5, reviews the principal results of our study and
describes plans for future experiments in which the comparison with theory is a key
feature of the experimental configuration.

2. The experiment

In order to allow a careful comparison between theory and experiment it was desired
to produce uniformly rotating fluid which could then be stratified and placed into
motion by imposing a radially variable temperature on the upper surface. The device
which was used to achieve this result consisted of a rotating container with two coaxial
Plexiglas cylinders on an aluminium base with a medal lid as shown in figure 1. The
bottom temperature was maintained by flushing the 1 cm thick aluminium plate
continuously with cold water from a refrigerated bath at a temperature T

b
. The top

temperature distribution was imposed by using a circular stainless steel lid 3 mm thick
and 22 cm in radius which was heated as follows.

In a region of radius 2±75 cm near the middle of the upper plate, a cylindrical tube
was bolted to the lid and contained water fed from a thermostatic bath at temperature
T
i
. Near the outer circumference at 22 cm from the centre, there was a circular loop of

copper tubing silver-soldered to the lid. It was fed by water from a second hot bath at
temperature T

o
. Thermal conduction through the metal plate was intended to establish

a smooth and monotonic conductive transition between the temperatures of the two
baths at T

i
and T

o
. In practice, the downward conduction of heat into the fluid was non-

negligible and the surface distribution of temperature, which represents the forcing of
the motion in the container, was non-monotonic with a temperature minimum about
halfway between the inner and outer radii of the cylinder. To determine the actual
radial distribution of temperature which is used as a boundary condition for the
theory, the apparatus’ lid was fitted with five thermocouples glued in holes at radii of
0, 4, 8, 12 and 16 cm from the centre. In some of the later experiments the temperature
was measured at 2 cm intervals from the centre but the measurements gave a
temperature distribution which differed negligibly from the previous distributions from
the five thermocouples.

The outer wall of the cylindrical tank had an inside diameter of 44±5 cm but to reduce
heat loss and mimic insulation of the outer vertical boundary a second wall with an
inside diameter of 33 cm was inserted. The test section was within this inner wall ; the
outer annular chamber presumably contained a stratified fluid which matched the
vertical stratification of the test chamber. The top lid rested directly on this false
sidewall to make a test chamber 9±8 cm deep. The outer cylinder of the tank and the
top lid were closely encased with 5 cm of rubber foam for thermal insulation so that
heat loss to the air was reduced as much as possible with respect to the heat flux into
the fluid from the plates. The top lid was unfortunately slightly distorted by soldering
during construction so that it was warped by about 2 mm from being truly flat. The
warp was axially symmetric and was most pronounced at radii beyond 16 cm and thus
is small in the test section. There may be some small quantitative effect of the warp on
the flow by altering very slightly the actual applied radial temperature gradient. We
believe the effect is qualitatively negligible.

The tank and the three baths were mounted on a 1 m diameter rotating turntable
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F 1. A schematic view of the experimental apparatus. The working fluid is contained in the open
region within the inner boundary indicated in the figure while the fluid is heated at the upper surface
and cooled at the lower surface as described in the text.

(a) (b) (c)

F 2. The dye streaks demonstrating the profile of azimuthal velocity in the experiment:
(a) S¯ 0±014, (b) S¯ 0±15, (c) S¯ 29.

with a rotation rate adjustable to 0±001 s−". Runs were conducted by setting thermostat
values and commencing rotation. Care was taken to ensure that the fluid had arrived
at a steady state before taking data. Temperatures of 15 thermocouples were monitored
every 600 s and automatically stored so that the evolution of the temperature field
could be reproduced. These 15 thermocouples were located at the five radii in the upper
lid as described previously; four were 0±9 cm below the top lid at radii of 2, 6, 10 and
14 cm from the centre while three were located at 4 cm above the bottom at 0, 8 and
16 cm from the centre. Finally another three thermocouples were located on the
bottom directly below the three that were placed at 4 cm above the bottom. It was clear
from monitoring these thermocouples that it took about 6 hours for the temperature
field in the experiments to achieve a steady state.
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The flow was visualized with a thymol blue technique. Thymol blue solution, a pH
sensitive indicator, was buffered to the yellow side of its transition pH. Vertical brass
rod electrodes were spaced at 2 cm radial intervals from 2 to 14 cm. When 1±5 V was
applied, the solute around the negative electrode changed to a dark blue with little
change of fluid density. The fluid flow was predominantly azimuthal as a consequence
of the axial symmetry of the forcing and this velocity was indicated by the motion of
the dye away from the wire. This technique is particularly well suited for measuring
slow flows. In the present case the observed fluid velocities were less than 0±06 cm s−"

and this method worked quite well although in a few cases buoyant effects were noted
in the dye after a few minutes.

The principal measured quantity was the azimuthal velocity. During a velocity
measurement the side insulation was removed and the tank was backlit with fluorescent
lights. Images of the dye were recorded continuously on video tape as the tank spun
in front of the camera. As time progressed, die streaks were swept away from the
electrode and a profile could be measured later by freezing video frames and measuring
dye displacement. Lengths on the screen were calibrated by measurements of the profile
of a 1±27 cm ball that was placed at different radii to correct for magnification
produced by the curved cylindrical walls. Successive measurements divided by the time
interval gave the velocity. Photographic examples of such dye streaks are shown in
figure 2.

For the range of parameters of these experiments the appropriate measure of
stratification is

S¯αg∆T
v
}( f #L), (2.1)

where α is the coefficient of thermal expansion, g is the acceleration due to gravity, ∆T
v

is the temperature difference between the upper and lower plates of the cylinder, f is
twice the rotation rate of the cylinder and L is the cylinder’s depth. This can also be
expressed simply as S¯N #}f # where N is the Brunt–Va$ isa$ la$ frequency of the stratified
fluid.

In figure 2(a) the velocity profile is shown for a case of small stratification, S¯ 0±014
while figure 2(b) shows the profile for a moderate value, S¯ 0±15. Figure 2(c) shows
the profile of azimuthal velocity for the fairly large S¯ 29. Note how the maximum of
the profile retreats to the upper boundary as the stratification increases. This is one of
the principal qualitative predictions of the theory. Note also the manner in which the
velocity smoothly goes nearly to zero at the upper and lower boundaries without the
need for Ekman layers to satisfy the no-slip conditions. A weak Ekman layer can be
still seen in the photos, manifested by the small gaps between the profile and each
boundary where the Ekman layers are transporting fluid radially.

The velocity profiles at 2 cm intervals from 2 to 14 cm from the centre were measured
and digitized. A typical set of profiles is shown in figure 3. The velocity is zero at the
upper boundary with increasing magnitude with depth. Each profile reaches a
maximum somewhere in the upper half of the tank and then decreases smoothly with
depth and very nearly vanishes at the cylinder’s bottom. The velocity profiles are
generally prograde at small radius and retrograde at large radius, reflecting the
minimum in the surface temperature forcing at mid-radius that was mentioned above.
It is particularly important to note that although the forcing is purely thermal rather
than mechanical, the velocity profiles at each radius are very nearly of a single sign.
There are no substantial reversals of the velocity with depth as one might expect for
a strongly baroclinic flow. In §3 this is shown to be related to the suppression of the
Ekman pumping by the stratification.
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F 4. A summary of the parameter space of the experiments.

Experimental runs were conducted over as wide a range of parameters as possible.
The appropriate measure of viscosity in the experiment is the Ekman number,

E¯ 2ν}( fL#) (2.2)

where ν is the coefficent of kinematic viscosity. Figure 4 shows a summary of the
parameters of the experiments in the (S,E "/#)-plane. A more detailed list of the
experiments, with the relevant experimental parameters, is given in table 1. The
experiments are coded by date. Note that S(E "/# in most of the cases which, as we
see below, has important physical consequences ; in particular, the theory predicts the
elimination of the Ekman layers in this limit. The Rossby number, ε, is defined below
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Date S E "/# ε f (s−") ∆T
v
(°C) L}(σS )"/# (cm)

5}17 116 0.048 29 0.085 30 0.38
5}16 29 0.033 6.15 0.17 30 0.79
5}10 8.68 0.024 2.31 0.36 30 1.6
5}14 1.08 0.023 0.60 0.36 5 3.9
1}22 0.85 0.014 0.26 1.0 30 4.5
5}3 0.56 0.014 0.15 1.0 20 5.7
1}9 0.52 0.014 0.16 1.0 20 5.9
12}7 0.3 0.014 0.11 1.0 10 7.8
12}1 0.15 0.010 0.04 2.0 20 11
1}10 0.07 0.010 0.02 2.0 10 16
1}25 0.014 0.008 0.008 3.12 5 36
1}24 0.012 0.008 0.003 3.12 4 39

T 1. List of experiments and their parameters

(equation (3.5)) while σ is the Prandtl number, i.e. the ratio of kinematic viscosity to
thermal diffusivity. The vertical temperature difference between the upper and lower
boundary of the cylinder is ∆T

v
.

Direct observations of the flow showed that it is eventually steady and axially
symmetric for all of the cases studied. There is no hint of instability of either the
classical baroclinic type or of symmetric instability. The former is probably eliminated
by the large values of the stratification (Pedlosky 1987) while the latter is similarly
unlikely due to the combination of small Rossby number (defined below) and high
stratification of the flow so that the flow is in the stable regime for symmetric instability
(McIntyre 1970). These experimental facts allow the construction of a fairly simple
laminar theory for the experiment which is taken up in the following section.

3. Theory

Based on the experimental results, we develop a theory for axially symmetric motion
in a cylinder of depth L and radius r*. The cylinder is spinning with angular velocity
Ω¯ f}2 and the fluid is considered to be incompressible and satisfies the Boussinesq
approximation. The temperature in the cylinder is partitioned as follows:

T
dim

¯T
oo

­∆T
v
(z}L)­∆T

h
T(r, z). (3.1)

The temperature scale ∆T
v

is the vertical temperature change which occurs linearly
from top to bottom in deviation from T

oo
. It is a solution to the thermal conduction

equation in the absence of motion (and ignoring the small centrifugal effects due to
rotation). The second scale, ∆T

h
, is the characteristic amplitude of the temperature

perturbation due to the heating of the upper surface as described in §2. A linear
equation of state relating temperature and density is used. The fundamental assumption
of the theory is that

∆T
h
}∆T

v
' 1. (3.2)

The independent and dependent variables are scaled as follows. Both the vertical and
horizontal lengths are scaled with L. The temperature anomaly is scaled, as in (3.1),
with ∆T

h
. The characteristic scale, U, for the horizontal velocity is determined from an

anticipation of geostrophic and hydrostatic balance for the azimuthal velocity so that

U¯αg∆T
h
}f. (3.3)
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The pressure scale is P¯ ρ
o
UfL. In terms of these scales the non-dimensional

equations of motion are

ε²uu
r
­wu

z
®�#}r´®�¯®p

r
­"

#
E[~#u®u}r#], (3.4a)

ε²u�
r
­w�

z
­u�}r´­u¯ "

#
E[~#�®�}r#], (3.4b)

ε²uw
r
­ww

z
´¯®p

z
­T­"

#
E[~#w], (3.4c)

1

r
(ru)

r
­w

z
¯ 0, ε²uT

r
­wT

z
´­wS¯

E

2σ
~#T, (3.4d, e)

where

~#¯
1

r 0
¥
¥r

r
¥
¥r1­

¥#

¥z#
;

otherwise, subscripts denote differentiation.
The radial velocity is u, the azimuthal velocity is � and the vertical velocity is w. The

Prandtl number σ¯ ν}κ, i.e. the ratio of the kinematic viscosity to the thermal
diffusivity.

The Rossby number is defined as

ε¯
U

fL
¯

∆T
h

∆T
v

S. (3.5)

Note that even this relatively simple problem has four dimensionless parameters : ε,
E, S and σ.

Since the motion is axially symmetric the azimuthal pressure gradient is zero and so
the geostrophic radial velocity is zero. The non-dimensional temperature is O(1) as is
the pressure and azimuthal horizontal velocity. This leads to a presumptive estimate for
the non-dimensional radial velocity, u¯O(E ). Further analysis shows that w%O(E "/#)
and, in fact, over the parameter range of interest for which σS is O(1) it can be
shown that w is O(E ) itself. Thus as long as ε' 1 the nonlinear advection of
momentum can be ignored in (3.4a–c). A similar analysis shows that as long as ε}S' 1
the nonlinear advection can be ignored in the thermal equation (3.4e). When these
conditions are fulfilled this yields the reduced linear set :

®�¯®p
r
­"

#
E [~#u®u}r#], u¯ "

#
E [~#�®�}r#], (3.6a, b)

0¯®p
z
­T­"

#
E [~#w],

1

r
(ru)

r
­w

z
¯ 0, wS¯

E

2σ
~#T. (3.6c–e)

Ekman layers may exist on the upper and lower surfaces of the cylinder. Standard
boundary layer analysis provides a compatibility condition that the bulk of the flow
must satisfy (Pedlosky 1987)

w¯ (®1)z
E "/#

2

1

r
[r�(r, z)]

r
, z¯ (0, 1), (3.7)

where �(r, z) is the fluid velocity just outside the Ekman layers.
The boundary conditions for T on these boundaries are

T¯ 0,

T¯T
u
(r),

z¯ 0,

z¯ 1,* (3.8)

where T
u
(r) is the known temperature applied at the upper surface. The outer radius
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of the cylinder in non-dimensional units is r
o
¯ r*}L. On r¯ r

o
, the outer rim of the

cylinder, the velocity is zero and the radial temperature gradient vanishes since the wall
of the cylinder is insulated.

The temperature in the cylinder can be anticipated to be O(1) from (3.8). This implies
from (3.6e) an estimate for the vertical velocity in the interior of the fluid of O(E}σS ).
Yet (3.7) suggests that the Ekman layers will normally pump a vertical velocity of
O(E "/#) into the interior. If σS(E "/#, which is the parameter domain of the
experiment, the Ekman layers will pump a velocity larger than the interior can absorb.
Barcilon & Pedlosky (1967b) show that this paradox is resolved by having the interior
flow adjust its azimuthal velocity so that, to lowest order, the interior � vanishes on the
upper and lower boundaries of the cylinder.

Before proceeding we demonstrate the vanishing of the interior azimuthal velocity
at the upper and lower boundaries by examining the interior flow in the parameter
range σS' 1. This is generally not the range of the parameters for the experiment but
it is a very illuminating parameter setting to examine the transformation of the
behaviour of the flow which is relevant to the experimental conditions.

For small σS there are two boundary layers on the sidewall of the cylinder. The
thinner one has a non-dimensional thickness

δ
b
¯

1

L 0
4νκL

αg∆T
v

1"/%¯
E "/#

(σS )"/%
(3.9)

and is called the buoyancy layer by Barcilon & Pedlosky. Its dynamics are non-
hydrostatic and its function in the present circumstance is only to help satisfy the no-
slip condition on the weak vertical velocity. It will not be considered further.

A wider boundary layer exists whose non-dimensional thickness is

δ
h
¯ [σS ]"/#, (3.10)

which normally serves to close the circulation in the vertical plane. However, with
insulating conditions on the sidewall it is possible to show that the boundary layer is
inactive to lowest order. In that case the problem reduces to the problem for the
interior in which, for σS' 1 it follows from (3.6b) that u is O(E ) while w is larger and
is O(E}σS ). Hence from (3.6d ) it follows that to O(σS )

w
z
¯ 0 (3.11)

in the interior. Thus, if ψ is the streamfunction for the velocity in the (r, z)-plane, i.e.
if

w¯
1

r
ψ

r
, u¯®

1

r
ψ

z
, (3.12a, b)

it follows that in this limit (σS' 1) ψ is a function only of r. Barcilon & Pedlosky
(1967c) show that using the Ekman compatibility conditions, (3.7), the thermal wind
relation for �,

�
z
¯T

r
(3.13)

allows ψ to be written as

ψ¯®"

%
E "/# r&"

!

T
r
dz (3.14a)

and

�¯& z

!

T
r
dz«®

1

2&
"

!

T
r
dz. (3.14b)
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Note that ψ is identically zero on the rim of the cylinder where the radial
temperature gradient vanishes. From the thermal wind this also implies that � vanishes
there as well. This demonstrates the ability of the interior fields to satisfy all but the no-
slip condition on w at r¯ r

o
.

A key parameter of the problem is the ratio

λ¯
σS

2E "/#
. (3.15)

Although σS has been assumed to be small, the size of the parameter λ is arbitrary.
When λ is small the fluid acts as an unstratified fluid in the sense that the Ekman
pumping dominates the dynamics. When λ is large the stratification suppresses the
interior vertical velocity to a level below that which an order 1 azimuthal velocity at
the horizontal surfaces will pump into the interior. If (3.12a) and (3.14a) are used in
(3.6e) it can be shown that the temperature satisfies,

~#Θ¯ 0, (3.16)
where

Θ¯T(r, z)­λ &"

!

T(r, z) dz. (3.17)

Note that

w¯®"

%
E "/#

1

r

¥
¥r

r
¥
¥r&

"

!

Tdz. (3.18a)

The equivalent temperature Θ satisfies the conduction equation but includes the
effects of linearized advection through (3±14). In terms of Θ

Τ¯Θ®
λ

1­λ&
"

!

Θdz. (3.18b)

On the outer wall of the cylinder both Θ and T satisfy the zero radial derivative
condition. The solution is completed by applying the conditions (3.8) on T in (3.18b).
In the limit of large λ the temperature T will have from (3.18b) a vertical average which
will be of order (λ−"). Thus, from (3.18a) w will be of the order of E}σS for λ( 1, i.e.
much less than that estimated from the Ekman pumping condition.

To examine the character of the solution we consider first a simple illustrative
example in which the upper temperature is a monotonically increasing function of r,
namely

T
u
¯ er/ro®1.

Figure 5 shows the azimuthal velocity at the mid-radius of the cylinder, r¯ 0±5r
o
, for

three values of λ. In figure 5(a) the azimuthal velocity is shown for the small value of
λ¯ 0±01 for which the fluid acts as if it were unstratified. In this limit the vertical
advection in the mean temperature gradient is inconsequential and the temperature
field is established by pure conduction. Indeed, in this limit there is little difference
between T and Θ. The azimuthal velocity is cyclonic near the upper surface and the
Ekman velocity pumped downward passes unaltered to the lower surface where it is
absorbed in the lower Ekman layer. Note that � is equal but of opposite sign at the two
boundaries as it must be from (3.7). The asymmetry in the �-profile, i.e. the fact that
the zero of � occurs for zE 0±81, is due to the larger vertical shear in the upper region
of the fluid where the heating takes place. The thermal wind vanishes at the lower
surface where the radial temperature gradient is zero in response to the boundary
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condition. In this limit the flow is baroclinic but the control of the fluid by the Ekman
layers still reflects a strong barotropic dynamics.

In 5(b), λ¯ 1. Note that the azimuthal velocity is smaller in magnitude at the upper
and lower surfaces than in the previous example. This is an indication of the quenching
effect of the stratification on the Ekman pumping. As the stratification increases the
magnitude of the vertical velocity must decrease. For σS(E "/# the vertical velocity is
O(E}σS ) and is less than E "/#, in which case � must go to zero on the lateral boundaries
of the cylinder. This is shown in figure 5(c) in which the case λ¯ 100 is shown. In this
limit the azimuthal velocity of the interior flow very nearly satisfies the no-slip
boundary condition at z¯ 0 and z¯ 1. The azimuthal velocity is now an entirely
retrograde jet with a maximum above the mid-point of the depth. The thermal wind
shear is positive near z¯ 1 as specified by the surface temperature condition. That,
coupled with the condition that � must be zero there in order to quench the Ekman
pumping, forces � to become increasingly negative in the region below the upper lid of
the cylinder. The �-profile must return to nearly zero at z¯ 0. Since the temperature
is horizontally uniform at the lower boundary the vertical shear of � due to the thermal
wind balance should be zero at z¯ 0. The slight departure of the thermal wind shear
in the figure from zero at the lower boundary reflects only a minor inadequacy in
plotting routine.

Thus as long as σS(E "/# the Ekman layers are an inconsequential factor in the
dynamics.

In the interior the azimuthal velocity is always in geostrophic and hydrostatic
balance. This allows a single equation for the pressure to govern the motion in the
range E "/#'σS'E−".
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A straightforward manipulation of the momentum equations allows us to obtain
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and ¡
h
[u is the divergence of the horizontal velocity.

For motions with length scales greater than that of the Ekman layer (E"/#), the
second term in the square bracket on the left-hand side of (3.19) is negligible. Using the
continuity equation, the hydrostatic approximation and the thermal equation, (3.6e),
we can obtain a single equation for the pressure which holds in the interior, outside the
Ekman layers, which as we have seen are relatively inconsequential features in this
parameter regime.

Thus the pressure satisfies :
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¥#

¥z#: p¯ 0. (3.20)

The vorticity balance leading to (3.20) is simply

0¯
¥w
¥z

­"

#
E~#ζ, (3.21),

where ζ is the vertical component of the relative vorticity. When (3.21) is combined
with the thermal equation and the geostrophic approximation is used to express ζ in
terms of the pressure, (3.20) follows directly.

It is easily seen that for small σS a boundary layer of width (σS )"/# will occur on the
outer wall of the cylinder in order to retain the order of the differential equation. As
σS approaches unity this layer grows and fills out and becomes part of the interior. As
σS increases further so that σS( 1 a boundary layer appears near the upper horizontal
plane. It has a thickness (σS )−"/#. A similar boundary layer could occur near the lower
boundary of the cylinder but it is not required.

In the limit of large σS detailed but straightforward boundary layer analysis, not
presented here, shows that the thermal forcing is trapped in this upper boundary layer.
The resulting equation is simply the square bracket of (3.20) set equal to zero. The
radial temperature gradient is O(1) in this boundary layer so that over this depth of
length (σS )−"/# the azimuthal velocity changes by this amount. Since � must vanish at
z¯ 1 (recall that the Ekman layer has been expunged at lowest order by the
suppression of the Ekman pumping by the stratification) this allows the azimuthal
velocity to grow to only O((σS )−"/#) at the edge of the boundary layer. The thermal
forcing does not penetrate beneath that boundary layer and so the temperature
perturbation, T, is zero. This implies that w must vanish below the boundary layer and
this implies that u does also. Hence the circulation in the vertical plane is limited to the
upper thermal boundary layer. Beneath that layer (3.6b) applies with u¯ 0. In this
region the azimuthal velocity satisfies a diffusion equation: more precisely, p satisfies
Laplace’s equation in the region below the thermal boundary layer. In this region the
velocity generated in the thermal boundary layer diffuses downward smoothly and
matches the zero-velocity condition at the lower boundary. This, physically, is the
nature of the solution in the high-stratification limit. Note that in this limit the
streamfunction for u and w velocities will be O(E ) and limited to the thermal boundary
layer region. This secondary circulation is closed in a very weak upper Ekman layer
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which serves only to close the weak mass flux generated in the interior. Over the whole
parameter range given before (3.19) the appropriate boundary conditions for (3.20) are

p
r
¯ 0, z¯ 0, 1, (3.22a)

p
z
¯ 0, z¯ 0, (3.22b)

p
z
¯T

u
(r) z¯ 1. (3.22c, d )

On the sidewall of the cylinder the only boundary layer for σS& 1 is the buoyancy
layer described above and with insulating boundary conditions its effect on the flow is
inconsequential. It follows that on the outer rim of the cylinder the condition of no slip
for the azimuthal velocity is satisfied by requiring

p
r
¯ 0, r¯ r

o
. (3.23)

The hydrostatic relation implies that the thermal insulating condition is matched
automatically by (3.23) as a vertical derivative of the condition illustrates. It is also
possible to show (and the results presented below will verify this) that the solution of
(3.20) subject to (3.22) will also automatically satisfy ψ¯ 0 on r¯ r

o
.

Thus, solutions of (3.20) can be sought in the form
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where k
n

is the nth zero of the first Bessel function so that (3.23) is satisfied. The
function P

n
can be written as
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obtained by matching to the boundary conditions on z¯ 0 and 1. The only input
required from the experiment, aside from the governing parameters, is the temperature
distribution on z¯ 1. In the next section we present the results of our calculations for
the laboratory cases and present the comparison between the theory and measurements.
Note that in (3.25) the last two terms represent the thermal boundary layers possible
on z¯ 0 and z¯ 1 while the first two terms represent the region where the azimuthal
velocity works its way downward to the lower boundary by viscous diffusion. It is not
difficult to show that (3.6e) requires
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σS 9rprz
­& r
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r«p
zzz

dr«: (3.26)

from which it follows that ψ will differ from zero only within a region of order (σS )−"

of the upper surface.

4. Comparison of theory and experiment

Each experimental run corresponds to a given vertical temperature difference and
rotation rate as given in table 1. These determined the parameters E and S. The
horizontal temperature distribution of the upper lid was measured. Its overall
amplitude of variation determined the Rossby number ε while its distribution with
radius determined the structure of the flow driven in the cylinder and calculated from
the linear theory. Note that in some cases the Rossby number is greater than unity.
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However, the crucial nonlinearity is undoubtedly the advection of temperature; as
noted in §2 it is the ratio of the Rossby number and S which measures the nonlinearity
and that is always small.

The distribution of the surface temperature was measured at a number of radii and
then fitted to a polynomial to use in the theory. For example, figure 6 shows the
temperature distribution for experiment 12}1. Note that the temperature distribution
is non-monotonic. It decreases sharply from the centre, has a minimum at about
halfway to the cylinder’s outer wall and then increases. This results, we believe, from
the imperfect conductivity of the upper plate so that the monotonic conductive
distribution from T

i
to T

o
was not realized. No matter : we can take this more

complicated distribution as the boundary condition for the theory, and there is actually
an advantage in this. From the discussion of §2 we expect a negative thermal wind
shear in the inner zone of the cylinder where the radial temperature gradient is
negative, and the opposite sign in the outer region. We therefore expect a prograde jet
in the inner domain of the cylinder and a retrograde jet in the outer zone since σS}E "/#

is large (85±23) and the Ekman layer suction must be quenched. The experimental
profiles of figure 3 demonstrate this quite clearly. The reversal of the flow is seen to
occur in the vicinity of the profile taken at r¯ 8 cm in agreement with the position of
the reversal of the temperature gradient.

Figure 7 shows the calculated velocity field. Figure 7(a) shows � in cm s−" contoured
in the (r, z)-plane. Positive � contours are solid, negative � is indicated by dashed lines.
The two jets observed in the experiment are clearly in evidence. Figure 7(b) shows � as
a function of depth at the positions at which the azimuthal velocity in the experiment
was measured so that these profiles should be compared with those of figure 3. The
agreement is generally very good. The amplitudes of the maximum positive and
negative velocities are in close agreement although the computed retrograde jet is
somewhat faster than the experimental value. At r¯ 8, where the velocities are weak
and change sign, there is a substantial quantitative disagreement but this is to be
expected since the signal is small there. One important feature of the motion that is
predicted by the theory is the depth of the core of the velocity maximum, and there is
relatively good agreement between theory and experiment. For example, the r¯ 2 cm
profile has its experimental maximum at about 2 cm below the surface which is only
slightly lower than that predicted by the theory.

Figure 7(c) shows the streamlines of the weak O(E ) meridional circulation in the (r,
z)-plane for the interior. The circulation closes in the very thin and weak upper Ekman
layer which is not resolved in the theory. Such velocities are too small to measure but
it is interesting to note the double cell of the circulation driven by the reversal of the
temperature gradient. The temperature anomaly is lowest near the mid-radius and this
is the region of diffluence of the circulation as fluid moves, in the interior, both inward
and outward from this radius.

In figure 8 the velocity profiles at two locations r¯ 2 and r¯ 14 are compared
directly with the experimental data which are indicated with ­ symbols. Figure 8(a)
shows the innermost profile, i.e. the profile with the largest measured prograde velocity.
It is clear that the agreement is excellent both for magnitude and structure. Figure 8(b)
shows the comparison at r¯ 14 cm. The agreement is quite good although as remarked
above the computed maximum is slightly greater than that observed although the
depth of the peak is well predicted. In this experiment σS is order 1(E 0±825) and we
note the mid-depth range of the meridional circulation. The thermal boundary layer is
fat and the full equation (3.20) is required to obtain an accurate solution. It is
important to emphasize that this solution, which ignores the frictional forces acting on
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F 6. The horizontal non-dimensional distribution of temperature at the upper lid of the
cylinder for experiment 12}1 of figure 3.

the meridional velocity satisfies the no-slip condition on � without the aid of an Ekman
layer. The thermal wind generated in the interior bends the interior velocity profile
sufficiently so that it renders � essentially zero at the top and bottom. This serves to
eliminate Ekman pumping which must occur as long as σS is large compared to E "/#.

Figure 9 shows the comparison for a case in which the stratification is much greater.
This is experiment 5}16 in which σS¯ 168±6. Both the experimental profiles of � in part
(a) and the calculations in part (b) show, as expected, the velocity maximum to be
achieved closer to the upper boundary with the core of the jet, i.e. the maximum of the
velocity at about a tenth of the total depth from the surface in agreement with the
estimate of the boundary layer thickness, L}(σS )"/#. Again, the comparison between
theory and observation is very satisfying. Figure 9(c, d ) shows the detailed comparison
of the velocity profiles at r¯ 2 cm and r¯ 14 cm respectively. In the former case the
theory matches the data almost exactly in the range 0±75% z}L% 0±9 in the region of
maximum positive shear. The observation of the profile seemed to show the velocity
going to zero beneath the upper boundary at about 0±5 cm from the top. At greater
depth the observed dye streak seems vertical, indicating a nearly constant velocity. This
seems unlikely in this high stratification limit but we have no explanation for this
discrepancy. It is possible that transient effects associated with a slight alteration of the
rotation rate when the thermal insulation was removed to allow data collection may
be responsible. This could lead to a small uniform drift in the velocity. Figure 9(d )
shows the same comparison at r¯ 14 cm. The agreement is fairly good although,
again, the theory predicts a somewhat higher level for the peak of the velocity core than
indicated by the measurements. Still, the overall prediction of magnitude and structure
is good. Calculations of the meridional streamfunction ψ show that it has retreated to
a region of about 5% of the total depth as a consequence of the stratification. Since



406 J. Pedlosky, J. A. Whitehead and G. Veitch

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0

0.8

0.6

0.4

0.2

0
–0.03 –0.02 –0.01 0 0.01 0.02 0.03 0.04 0.05

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(a)

(b)

(c)

z
L

z
L

z
L

v (r, z)

r/L

ã (r, z)

r/L

v(z) cm s–1)

F 7. The calculated fields of motion for the 12}1 experiment. (a) Contours of � in the (r, z)-plane.
Each contour interval is 0±005 cm s−". Negative values of � are shown by dashed contours. (b)
Azimuthal velocity profiles at r¯ 2 (——), r¯ 4 (––), r¯ 6 (­), r¯ 8 (D), r¯ 10 (–[–), r¯ 12 (n),
r¯ 14 (solid). (c) Contours of ψ.

the overall magnitude of ψ remains of O(E ) the radial velocity, which must be squeezed
into the thermal boundary layer, has a magnitude of E(σS )"/#. This is too small to be
measured. However, for large stratification its effect can be indirectly observed. We
noted that the dye coming off the electrodes for this case did not remain in vertical
sheets as was the case for experiments at lower stratification. Instead, the sheets seemed
to twist out of the vertical plane near the upper surface and we speculate that this may
be a reflection of the radial motion.

Figure 10 shows a comparison for a relatively weak stratification case (1}25) in
which σS¯ 0±0834 (still over 10 times greater than E "/#). Figure 10(a) shows the
experimental profiles, (b) shows the contours of �, (c) shows the calculated contours
and (d ) shows the meridional streamfunction. At this low value of S the velocity peak
is close to mid-depth in the data. There is now a considerable quantitative discrepancy
between the theory and the data. Indeed the data show the velocity greater at r¯ 4 cm
than at r¯ 2 cm although the theory shows the reverse. Figure 10(e, f ) shows the
detailed comparison of the theory and data at r¯ 2 cm and r¯ 14 cm. Especially for
the latter profile, the peak is too high in the theory as compared with the observation
and the magnitude is overestimated in the theory by nearly 40%. The disagreement is
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especially perplexing in this case because the Rossby number is so small. However ε}S
is about 0±57 and so the ignored nonlinear advection in the density equation may be
significant in this case.

As one anonymous reviewer has pointed out, the calculations indicate that at a
radius of about 14 cm from the centre the meridional circulation is downward and is
close to its maximum value. It is quite possible that the associated downward advection
of the dye could contribute to the apparent discrepancy between the predicted depth
of the azimuthal velocity maximum and the peak observed in the dye trace. However,
this would also depend on the time between dye injection and the velocity measurement
and it is difficult to quantify the effect.

The above figures show details of three typical examples of both good and fair
agreement of theory and experiment. To show the results of all experiments in a
compact form, values of the maxima of the azimuthal velocity for all runs and at all
radii were determined from data sets like those which generated figures 3 and 9(a).
They are compared with the maxima of predicted velocity (read from the theoretical
curves such as shown in figure 7b) in figure 11. The correspondence between the
observation and prediction is quite close in most cases. The regression coefficient to a
straight line (with a slope of 1±1) is 0±93. The datum with r¯ 4 cm and prediction of
0±1 had the poorest agreement with the regression line. This run had the slowest
rotation and the velocity was so great that the dye was difficult to detect and we suspect
the reading of the dye edge was in error. Some of the other data with measurements
of velocity less than the theory may have suffered from indistinct dye as well. The
second-poorest agreement was for data with r¯ 6 cm. It seems that the core of the jet
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maximum extended to that radius, somewhat beyond what the theory predicted. A
thermistor reading producing a systematic error for the lid temperature is suspected as
a source of error in this case.

Of course, there are other sources of error as well. We have already mentioned the
warping of the lid. The presence of the electrode rods themselves will produce some
heating internally as well as drag on the fluid. The vertical variation of temperature is
large enough that variations of some of the fluid properties such as the Prandtl number
and coefficient of thermal expansion are not completely negligible. For some of the
extremely slow flows the dye streaks exhibit some signs of descent which we attribute
to double-diffusive effects. We believe these latter effects are relatively small and that
the discrepancies of the theory and the experiment, where they occur, are most likely
due to inadequacies of the theory. Of these, the neglect of the nonlinear advection of
temperature is probably the most significant. In addition, for very large σS, the
thickness of the upper thermal boundary layer begins to approach the Ekman layer
scale and the interaction of the two needs to be considered in more detail.

Still, the theory and experiments agree to within a few tens of percent accuracy over
almost four orders of magnitude of the stratification parameter and the relative success
of the linear theory in explaining the experimental results is impressive.
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5. Discussion and conclusions

A rotating cylinder containing stratified fluid is driven by establishing at the upper
surface a radially varying distribution of temperature. Linear theory has been shown
to predict well the basic features of the response of the fluid to the forcing and in some
cases the agreement is quantitatively excellent. One of the principal predictions of the
theory is the suppression by the stable stratification of the Ekman layers as order-one
elements of the dynamics. The nearly inviscid interior velocity adjusts its profile to
match the no-slip boundary conditions so that the Ekman layer strength is smaller than
would be anticipated by the overall mangitude of the interior velocity. The experimental
results amply confirm this theoretical prediction. The interior equation of motion in the
limit σS(E "/# then governs the dynamics. Were the Prandtl number equal to one this
would be a conduction equation for the geostrophic potential vorticity. In the case
when σ1 1 the structure of the governing equation still emphasizes the important role
that diffusion plays in determining the velocity structure. In the heated cylinder case,
the direct effect of the heating and the Coriolis torque induced by the meridional
motion is limited to a region whose depth shrinks to the upper surface as the
stratification increases. Beneath this region the fluid is dragged along by viscous
stresses from the upper flow region and the azimuthal flow in this region smoothly
decreases from its maximum value in the upper thermal boundary layer to the null
value on the lower surface. Because of the thermal wind relation the vertical shear in
this region below the thermal boundary layer implies the existence of temperature
perturbations. These, however, result from the geostrophic tilting of the otherwise flat
temperature surfaces in the basic state rather than a penetration of the surface thermal
forcing. We believe this basic mechanism is of potential importance in oceanic stratified
flows and will serve to partially decouple the interior flow from bottom viscous effects
that would normally be provided by Ekman layers.

There are several experiments similar to the ones we have already carried out that
would be interesting to examine, especially in the context of comparison of theory and
experiment. It would be of interest to continue to increase the lateral thermal forcing
even further to enter a more radical nonlinear regime. In addition it would be of great
interest to combine thermal forcing with mechanical forcing. The simplest way to
include mechanical forcing would be by differential rotation of the upper lid of the
container. The interplay between the two forcing mechanisms, which are purely
additive in linear theory, would be interesting to examine experimentally, especially in
a nonlinear regime.
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It would also be of interest to return, in a more controlled manner, to driving the
fluid by differentially heating the sidewalls while maintaining the overall vertical
stratification. This would restore the important role of the sidewall boundary layers in
the physics of the problem and would, no doubt, emphasize nonlinear effects in the
neighbourhood of the boundary layers. This would especially be true for non-axially
symmetric heating.

For the moment we wish only to re-emphasize that at least in this well-controlled
physical environment, linear analytic theory has been remarkably successful in
explaining the experimental observations of flow being independent of Ekman
dynamics. Experiments at much smaller values of σS, in which there is a metamorphosis
of the physical nature of the circulation from being controlled by Ekman suction, have
yet to be realized.
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